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ABSTRACT

A survey of the Km(CO2) values of ribulose-1,5-bisphosphate carboxylase
from 60 grass species shows that enzyme from C3 grasses consistently
exhibits lower Km(CO2) than does that from C4 grasses. Systematically
ordered variation in Km(CO2) of ribulose-l,5-bisphosphate carboxylases
from C3 and C4 grasses is also apparent and, among C4 grasses, this shows
some correlation with C4 types.

RuBP3 carboxylase (EC 4.1.1. 39) is the fundamental carbox-
ylating enzyme of photosynthesis. Comparisons among reported
Km(CO2) values for this enzyme suggest that the C3 and C4
photosynthetic pathways may be distinguishable in terms of sub-
strate affmity for CO2 (2, 6, 15, 22); however, published figures
are not reliably interpretable because Km(CO2) estimations may
depend upon the assay conditions (4, 26). As part of a comparative
and systematic survey ofRuBP carboxylase in grasses, an attempt
has been made here to discover the extent of Km(CO2) variation,
and whether it primarily reflects different photosynthetic path-
ways, taxonomic relationships, or ecology. Concentration has
initially been on grasses (Poaceae), a family whose taxonomic
relationships have been thoroughly studied and which incorpo-
rates both C3 and C4 plants, including different C4 types (8-11).

MATERIALS AND METHODS

Plant Material. Plants listed in Table I were grown from seeds
or collected from the field, and their identities were conscientiously
checked with reference to appropriate regional floristic works.
Enzyme Preparation and Assay. RuBP carboxylase was ex-

tracted in 100 mm Bicine Buffer (pH 8.0), containing 25 mM MgC12
and 1 mM DTT, and partially purified by elution through Seph-
adex G-25 in the same buffer. The enzyme was preactivated in 5
mM NaHCO3 and then assayed by measuring the fixation of
['4C]bicarbonate (2). The reaction mixture containing 100 mm
Bicine and 25 mM MgCl2 (pH 8.0) was prepared C02-free and
flushed with N2. Assays (total volume, 400,ul) were performed in
l-ml stoppered vials (Pierce Reacti-vials No. 13221) which had
been flushed with N2. Reaction was started by injection of 5 ,ul
preactivated enzyme and stopped after 1 min at 25 C by injection
of 0.2 ml 2 N HCOOH. Bicarbonate concentration ranged from
0.4 to 16.5 mm, with RuBP fixed at 0.5 mM. The bicarbonate
introduced into the assay solution with the enzyme aliquot was

3Abbreviations: RuBP, ribulose 1,5-bisphosphate; NADP-ME, NADP-
malic enzyme; NAD-ME, NAD-malic enzyme; PCK, phosphoenolpyru-
vate carboxykinase.

taken into consideration when calculating HC03- concentration
and specific radioactivity. To minimize this correction for unla-
beled HC03-, only 5 [L of the extract was used for assay, and
NaHCO3 used for activation was limited to 5 mm. The possibility
that full activation may not have been reached in extracts and
that this may have produced variations in Km(CO2) values was
checked by using 10 mm NaHCO3 in some preactivation condi-
tions. This had no detectable effect on the Km(CO2) values of
RuBP carboxylase from either C3 or C4 plants; hence, 5 mm was
chosen as the activation level for all assays reported here. The Km
values were statistically calculated using Wilkinson's method (30).
The CO2 concentration then was calculated from the pH and
HC03- concentration using the Henderson-Hasselbach equation
and the pK value of 6.37 at 25 C (27).

RESULTS AND DISCUSSION

The Km(CO2) values of RuBP carboxylases extracted from 60
grass species, representing all the main taxonomic groups and
including all the known types of C4 plants, have been determined,
i.e. 35 C3, 24 C4 (12 NADP-ME, 7 PCK, and 5 NAD-ME), and
one C3-C4 intermediate (8-11). The results are summarized in
Table I, where the sample of grasses is arranged according to the
best available information on taxonomic relationships above ge-
neric level, regarding both the contents of the major groupings
and tribes, and (in so far as this can be achieved in a linear
arrangement) the sequence of their presentation (16, 28). The C3
grasses exhibit lower Km(CO2) values, ranging from 13 to 26 ltM
CO2, than do their C4 counterparts, where the values vary from 28
to 63 jtM CO2- Significantly, the C3/C4 distinction in terms of
Km(CO2) holds good within the eu-panicoid assemblage where
genera, which, in the context of the family as a whole, are
taxonomically very closely related, have yielded low values (13 to
18 JM C02) or high values (28 to 63 ltM C02) strictly in accord
with the difference in photosynthetic pathway. Likewise, Triraphis
mollis, a C4 danthonioid, has yielded a higher Km(CO2) (39 JAM
C02) than its C3 relatives, Cortaderia selloana (14 gM C02) and
Danthonia pallida (19 uM C02). Evidently, variation in Km(CO2)
is primarily associated with the distinction between C3 and C4
photosynthetic pathways, and questions of taxonomic relatedness
even at subfamily level are largely overridden by this considera-
tion. If the taxonomic groups have any phylogenetic import, it
must be concluded that grass RuBP carboxylases have shown
remarkable flexibility regarding evolutionary modification of their
kinetic properties.

There is no obvious correlation between the Km(CO2) of the
enzyme and the natural habitats of grass species. For example,
species from sand dunes, such as Festuca littoralis, Zoysia macran-
tha and Spinifex hirsutus, species from alpine regions (1500 m),
e.g. Poa hiemata, and grasses from aquatic habitats, e.g. Phragmites
australis and Oryza sativa, exhibit Km(CO2) values in line with
their photosynthetic pathways. Although our sample covers dif-
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Table 1. Km(CO2) ofRuBP Carboxylasefrom Grasses

C4 species are indicated by bold face, and those with an asterisk have been biochemically determined to be PCK, NAD-ME, or NADP-ME types
(8-10). The remainder are determined by anatomical criteria (11).

Species Km(CO2) l Species Km(CO2)

Bamboos
Arundinaria sp.

Oryzoids
Oryza sativa cv Baru
Oryza sativa cv Calrose

Pooideae
Triticeae
Hordeum vulgare
Secale cereale
Triticum aestivum

Bromeae
Bromus arenarius
Bromus unioloides

Agrostideae
Anthoxanthum odoratum
Deyeuxia quadriseta
Holcus lanatus
Lagurus ovatus
Phalaris brachystachya
Polypogon monspeliensis

Aveneae
Amphibromus neesii
A vena sativa

Meliceae
Glyceria declinata

Poeae
Cynosurus echinatus
Festuca arundinacea
Festuca littoralis
Lolium perenne
Poa helmsii
Poa hiemata

Arundinoids, danthonioids, etc.
Stipeae
Anisopogon avenaceus
Nassella trichotoma
Stipa mollis

Danthonieae
Cortaderia selloana
Danthonia pallida

26 ± 5

17 + 2
17 ± 3

15 ± 3
13 ± 2
15 ± 2

16 ± 2
17 + 3

20 ± 1
25 ± 2
24 ± 3
22 ± 5
19 ± 3
19 ± 2

19 ± 3
20 ± 2

17 ± 3

24 ± 12
20 ± 6
19 ± 3
19 ± 2
21 ±4
20 ± 2

18 + 3
20 + 3
20 ± 5

14 ± 2
19 ± 2

Triraphis moIIis* (PCK)
Arundineae
Arundo donax
Phragmites australis

Doubtful affinities
Microlaena stipoides
Tetrarrhena juncea

Chloridoids
Chloris truncata (PCK)
Sporobolus virginicus (PCK)
Zosia macrantha (PCK)
Eleusine coracana (NAD-ME)
Eragrostis chloromelas (NAD-ME)

Panicoids sensu lato
Eu-panicoids

Entolasia stricta
Isachne globosa
Oplismenus aemulus
Panicum bisukcatum
Panicum milioides (C3-C4)
Brachiaria lorentziana (PCK)
Panicum maximum* (PCK)
Spinifex hirsutus (PCK)
Panicum decompositum* (NAD-ME)
Panicum miliceum* (NAD-ME)
Panicum stapfianum* (NAD-ME)
Axonopus compressus (NADP-ME)
Echinochloa crus-gaIli* (NADP-ME)
Panicum antidotak* (NADP-ME)
Panicum lanipes* (NADP-ME)
Pennisetum typhoides* (NADP-ME)
Setaria geniculata (NADP-ME)

Andropogonoids
Bothriochloa inacra (NADP-ME)
Cymbopogon refractus (NADP-ME)
Imperata cyfindica (NADP-ME)
Sorghum vulgare* (NADP-ME)
Themeda australis (NADP-ME)
Zea mays* (NADP-ME)

39 + 5

16 + 3
20 4

21 +4
20 + 2

34 + 2
41 +7
34 ± 4
41 +5
46 ± 3

18 ± 2
13 ± 4
15 + 3
15 +4
13 + 2
28 + 2
37 ± 5
34 + 9
59 ± 5
58 ± 6
63 ± 8
61 ± 15
57 ± 21
53 ± 3
45 ± 1
54 + 3
51 +2

51 ±5
52 11
62 ± 8
50 ± 4
45 ± 9
56 ± 5

ferent ploidy levels in several grass groups [e.g. Agrostideae,
Panicoids sensu lato (cfrefs 17-2 1)], there is no indication here of
correlation between ploidy and Km(C02) as described by Garret
(7) and by Rathnam and Chollet (23) for cultivars of Lolium.
However, among both C3 and C4 genera, there is some taxonomic
pattern. Within the Pooideae (C3), the tribes Triticeae, Bromeae,
and Meliceae exhibit lower Km(CO2) values (13 to 17 JIM C02)
than do the Agrostideae, Aveneae, and Poeae (19 to 25 ,sm C02).
The Triticeae and Bromeae share a number of peculiarities, both
morphological and physiological, and the Km(CO2) values lend
some support to a recent proposal to distinguish them from other
Pooideae at supertribal level (13, 16, 25, 29). Among the C4
grasses, the chloridoids exhibit lower Km(CO2) values (34 to 46
/.M C02) than do the andropogonoids (45 to 62,UM C02), whereas
the C4 eu-panicoids exhibit a wider range (28 to 63 UsM C02) which
overlaps those of the chloridoids and andropogonoids. However,
this systematic variation among the C4 genera correlates to some
extent with the different C4 types in that carboxylases isolated
from PCK species tend to show lower Km(CO2) values (28 to 41
tAM C02) than do those from NAD-ME species (41 to 63 /Um C02)

and NADP-ME species (45 to 62 ,UM C02). The difference is
detectable within both the groups (chloridoids and eu-panicoids)
which exhibit mixtures of C4 types and, here too, phylogenetic
considerations are apparently being outweighed by functional
aspects. The two NAD-ME chloridoids have given lower values
than the three NAD-ME eu-panicoids, and it is not possible to
distinguish the carboxylases from NAD-ME and NADP-ME spe-
cies with respect to the Km(CO2) values.

Variation in Km(CO2) between the C3 and C4 species and among
C4 species may be functionally related to variations in the concen-
tration of C02 in the histological framework within which the
enzyme normally operates. Cyanobacteria and unicellular green
algae seem to have C02-concentrating mechanisms, endowing
them with a higher affmity for CO2 during photosynthesis (3, 14).
There, the lower substrate affinity of the enzyme is masked by the
ability to concentrate C02, and high-affinity enzymes have appar-
ently not evolved. In C3 higher plants, there appears to be no
ability to concentrate CO2; hence, affimity for external CO2 during
photosynthesis largely rests on the Km(CO2) of the enzyme. C3
plants seem to have evolved an enzyme with higher affinity for
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CO2. C4 plants concentrate CO2 within the bundle sheath (PCK)
cells where RuBP carboxylase is located (12). If they evolved from
C3 ancestors with high CO2 affinity, as seems likely, it appears
that, with development of an over-riding concentrating mecha-
nism, the enzyme's CO2 affinity decreased again. Such reversal
might have had certain selective advantages. First, the enzyme
from C3 plants seems to be inhibited by CO2 concentrations in
excess of about 60 ,uM, unlike the enzyme for C4 plants where
activity continues to respond to CO2 concentrations in excess of
180 uM (data not shown). Second, lower affinity for CO2 may be
associated with a high turnover number of enzyme [cfAnabaena
variabilis and Rhodospirillum rubrum, where values in excess of
four turnovers/s.active site have been reported, compared with
the values of less than 2 generally reported from higher plant
enzyme (1, 5, 24)]. Less enzyme or protein investment would
achieve the same C02-saturated rates of photosynthesis as in C3
plants. Variations in Km(C02) among C4 species may be related to
histologically derived differences between C4 types regarding CO2
accumulation: perhaps NAD-ME and NADP-ME forms are better
equipped to concentrate CO2 and/or prevent CO2 leakage from
the bundle sheath cells than are the PCK types.

There is considerable interest in breeding C3 crop plants, in-
cluding cereals, with reduced levels of photorespiration and O2
inhibition of photosynthesis. The RuBP oxygenase function of
RuBP carboxylase appears to be responsible for both these effects,
so plants with reduced RuBP oxygenase activity and specific
chemical inhibitors of this activity are being sought. However, the
correlative changes which seem to have occurred during evolution
of C02-concentrating mechanisms and of CO2 affinity of the
enzyme in grasses and algae suggest that selection pressure has
operated on the Km(CO2) of the enzyme, enhancing its efficiency
at lower CO2 concentrations. Little is known about any concomi-
tant changes in RuBP oxygenase activity, but comparison of
properties of the A. variabilis enzyme with that from higher plants
suggests that it does not increase in affinity or activity to the same
extent as the carboxylase function (1). Evolutionary modifications
in CO2 affinity of the enzyme as exemplified in Table I would
probably have occurred even in the absence of elevated O2 levels
in the atmosphere. Therefore, selective modification of RuBP
carboxylase aimed at improving productivity of C3 grasses (and of
C3 crops in general) should perhaps be directed towards screening
C3 forms for carboxylase mutants with even higher affmities for
CO2 than they now possess. This approach seems promising,
considering the flexibility regarding Km(C02) demonstrated by
this enzyme during its evolution.
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